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Ordinary Least-Squares Regression

Introduction
Ordinary least-squares (OLS) regression is a generalized linear modelling technique that may be used to 
model a single response variable which has been recorded on at least an interval scale.   The technique may 
be applied to single or multiple explanatory variables and also categorical explanatory variables that have 
been appropriately coded. 

Key Features
At a very basic level, the relationship between a 
continuous response variable (Y) and a 
continuous explanatory variable (X) may be 
represented using a line of best-fit, where Y is 
predicted, at least to some extent, by X.  If this 
relationship is linear, it may be appropriately 
represented mathematically using the straight 
line equation 'Y = α + βx', as shown in Figure 1 
(this line was computed using the least-squares 
procedure; see Ryan, 1997). 

The relationship between variables Y and X is 
described using the equation of the line of best 
fit with α indicating the value of Y when X is 
equal to zero (also known as the intercept) and 
β indicating the slope of the line (also known as 
the regression coefficient). The regression 
coefficient β describes the change in Y that is 
associated with a unit change in X.  As can be 
seen from Figure 1, β only provides an 
indication of the average expected change (the 

observed data are scattered around the line), making it important to also interpret the confidence intervals for 
the estimate (the  large sample 95% two-tailed approximation of the confidence intervals can be calculated as 
β ± 1.96 s.e. β). 

In addition to the model parameters and confidence intervals for β, it is useful to also have an indication of 
how well the model fits the data.  Model fit can be determined by comparing the observed scores of Y (the 
values of Y from the sample of data) with the expected values of Y (the values of Y predicted by the 
regression equation). The difference between these two values (the deviation, or residual as it is also called) 
provides an indication of how well the model predicts each data point.  Adding up the deviances for all the 
data points after they have been squared (this basically removes negative deviations) provides a simple 
measure of the degree to which the data deviates from the model overall. The sum of all the squared 
residuals is known as the residual sum of squares (RSS) and provides a measure of model-fit for an OLS 
regression model.  A poorly fitting model will deviate markedly from the data and will consequently have a 
relatively large RSS, whereas a good-fitting model will not deviate markedly from the data and will 
consequently have a relatively small RSS (a perfectly fitting model will have an RSS equal to zero, as there 
will be no deviation between observed and expected values of Y).  It is important to understand how the RSS 
statistic (or the deviance as it is also known; see Agresti,1996, pages 96-97) operates as it is used to 
determine the significance of individual and groups of variables in a regression model.  A graphical 
illustration of the residuals for a simple regression model is provided in Figure 2.  Detailed examples of 
calculating deviances from residuals for null and simple regression models can be found in Hutcheson and 
Moutinho, 2008.



The deviance is an important statistic as it 
enables the contribution made by explanatory 
variables to the prediction of the response 
variable to be determined. If by adding a 
variable to the model, the deviance is greatly 
reduced, the added variable can be said to 
have had a large effect on the prediction of Y 
for that model. If, on the other hand, the 
deviance is not greatly reduced, the added 
variable can be said to have had a small effect 
on the prediction of Y for that model. The 
change in the deviance that results from the 
explanatory variable being added to the model 
is used to determine the significance of that 
variable's effect on the prediction of Y in that 
model. To assess the effect that a single 
explanatory variable has on the prediction of 
Y, one simply compares the deviance statistics 
before and after the variable has been added 
to the model. For a simple OLS regression 
model, the effect of the explanatory variable 
can be assessed by comparing the RSS 
statistic for the full regression model (Y = α + βx) with that for the null model (Y = α). The difference in 
deviance between the nested models can then be tested for significance using an F-test computed from the 
following equation.

F df p−df
p+q

,df
p+q

=
RSS p−RSS p+q

df p−df p+q  RSS p+q / df p+q 

where p represents the null model, Y = α, p+q represents the model Y = α + βx, and df are the degrees of 
freedom associated with the designated model.  It can be seen from this equation that the F-statistic is simply 
based on the difference in the deviances between the two models as a fraction of the deviance of the full 
model, whilst taking account of the number of parameters.

In addition to the model-fit statistics, the R-square statistic is also commonly quoted and provides a
measure that indicates the percentage of variation in the response variable that is `explained' by the model. 
R-square, which is also known as the coefficient of multiple determination, is defined as

R2 =
RSS after regression

total RSS
and basically gives the percentage of the deviance in the response variable that can be accounted for by 
adding the explanatory variable into the model.  Although R-square is widely used, it will always increase as 
variables are added to the model (the deviance can only go down when additional variables are added to a 
model). One solution to this problem is to calculate an adjusted R-square statistic (R2

a) which takes into 
account the number of terms entered into the model and does not necessarily increase as more terms are 
added. Adjusted R-square can be derived using the following equation

Ra
2 = R2−

k 1−R2 
n−k−1

where n is the number of cases used to construct the model and k is the number of terms in the model (not 
including the constant).

An example of simple OLS regression
A simple OLS regression model with a single explanatory variable can be illustrated using the example of 
predicting ice cream sales given outdoor temperature (Koteswara, 1970).  The model for this relationship 



(calculated using software) is

Ice cream consumption = 0.207 + 0.003 temperature.

The parameter for α (0.207) indicates the predicted consumption when temperature is equal to zero.  It 
should be noted that although the parameter α is required to make predictions of ice cream consumption at 
any given temperature, the prediction of consumption at a temperature of zero might be of limited 
usefulness, particularly when the observed data does not include a temperature of zero in it's range 
(predictions should only be made within the limits of the sampled values).  The parameter β indicates that for 
each unit increase in temperature, ice cream consumption increases by 0.003 units.  The significance of the 
relationship between temperature and ice cream consumption can be estimated by comparing the deviance 
statistics for the two nested models in the table below; one that includes temperature and one that does not. 
This difference in deviance can be assessed for significance using the F-statistic.

Model deviance (RSS) df change in 
deviance

F-statistic P-value

consumption = a 0.1255 29
0.0755 42.28 <.0001

consumption = α + β temperature 0.0500 28

On the basis of this analysis, outdoor temperature would appear to be significantly related to ice cream 
consumption with each unit increase in temperature being associated with an increase of 0.003 units in ice 
cream consumption. Using these statistics it is a simple matter to also compute the R-square statistic for this 
model, which is 0.0755/0.1255, or 0.60.  Temperature “explains” 60% of the deviance in ice cream 
consumption (i.e., when temperature is added to the model, the deviance in the Y variable is reduced by 
60%).

OLS regression with multiple explanatory variables
The OLS regression model can be extended to include multiple explanatory variables by simply adding 
additional variables to the equation.  The form of the model is the same as above with a single response 
variable (Y), but this time Y is predicted by multiple explanatory variables (X1 to X3).   

Y = α + β1X1 + β2X2 + β3X3

The interpretation of the parameters (α and β) from the above model is basically the same as for the simple 
regression model above, but the relationship cannot now be graphed on a single scatter plot.  α indicates the 
value of Y when all vales of the explanatory variables are zero. Each β parameter indicates the average 
change in Y that is associated with a unit change in X, whilst controlling for the other explanatory variables 
in the model.  Model-fit can be assessed through comparing deviance measures of nested models.  For 
example, the effect of variable X3 on Y in the model above can be calculated by comparing the nested models

Y = α + β1X1 + β2X2 + β3X3

Y = α + β1X1 + β2X2                  

The change in deviance between these models indicates the effect that X3 has on the prediction of Y when the 
effects of X1 and X2 have been accounted for (it is, therefore, the unique effect that X3 has on Y after taking 
into account X1 and X2).  The overall effect of all three explanatory variables on Y can be assessed by 
comparing the models

Y = α + β1X1 + β2X2 + β3X3

Y = α.                  

The significance of the change in the deviance scores can be assessed through the calculation of the F-
statistic using the equation provided above (these are, however, provided as a matter of course by most 
software packages). As with the simple OLS regression, it is a simple matter to compute the R-square 
statistics.



An example of multiple OLS regression
A multiple OLS regression model with three explanatory variables can be illustrated using the example from 
the simple regression model given above.  In this example, the price of the ice cream and the average income 
of the neighbourhood are also entered into the model.  This model is calculated as

Ice cream consumption = 0.197 – 1.044 price + 0.033 income + 0.003 temperature.

The parameter for α (0.197) indicates the predicted consumption when all explanatory variables are equal to 
zero.  The β parameters indicate the average change in consumption that is associated with each unit increase 
in the explanatory variable.  For example, for each unit increase in price, consumption goes down by 1.044 
units. The significance of the relationship between each explanatory variable and ice cream consumption can 
be estimated by comparing the deviance statistics for nested models. The table below shows the significance 
of each of the explanatory variables (shown by the change in deviance when that variable is removed from 
the model) in a form typically used by software (when only one parameter is assessed, the F-statistic is 
equivalent to the t-statistic (F = √t) which is often quoted in statistical output).

deviance 
change

df F-value P-value

coefficient

   price 0.002 1 F1,26= 1.567 0.222

   income 0.011 1 F1,26= 7.973 0.009

   temperature 0.082 1 F1,26= 60.252 <0.0001

   residuals 0.035 26

Within the range of the data collected in this study, temperature and income appear to be significantly related 
to ice cream consumption.

Conclusion
OLS regression is one of the major techniques used to analyse data and forms the basis of many other 
techniques (for example ANOVA and the Generalised linear models, see Rutherford, 2001).  The usefulness 
of the technique can be greatly extended with the use of dummy variable coding to include grouped 
explanatory variables (see Hutcheson and Moutinho, 2008, for a discussion of the analysis of experimental 
designs using regression) and data transformation methods (see, for example, Fox, 2002).  OLS regression is 
particularly powerful as it relatively easy to also check the model asumption such as linearity, constant 
variance and the effect of outliers using simple graphical methods (see Hutcheson and Sofroniou, 1999).
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